GRADE 8

Evaluation Checkpoint #1

Activity: Students are to create a comic strip that takes a real life example and demonstrates the particle theory of solids, liquids and gases. The comic must include:

- 1. An explanation of the difference between solids, liquids, and gases in terms of density, using the particle theory of matter.
- 2. The various states of water on the earth's surface, their distribution, circulation, and the conditions under which they exist.
- 3. The processes that each state undertakes in order to physically change, as well as
- 4. What happens to the particles themselves (how heat affects the motion of particles and the effects of heat on volume in solids).

	Level 4	Level 3	Level 2	Level 1
3.1 identify the	All states of water on the	All states of water on	Two states of water on	One state of water on
various states of	earth's surface are	the earth's surface are	the earth's surface are	the earth's surface is
water on the earth's	comprehensive and	included. For each state	included. Most	included. The minority
surface, their	included. For each state of	of water, the	information is included	information is
distribution,	water, the distribution,	distribution, circulation,	about their distribution,	included about their
circulation, and the	circulation, and conditions	and conditions under	circulation, and	distribution,
conditions under	under which they exist are	which they exist are	conditions under which	circulation, and
which they exist	comprehensive and	included	they exist	conditions under
(8s73)	included			which they exist
3.3 explain the	Several ideas are	Many ideas are	Some ideas are	Few ideas are
difference between	incorporated to explain the	incorporated to explain	incorporated to explain	incorporated to
solids, liquids, and	difference between the	the difference between	the difference between	explain the difference
gases in terms of	states of matter using all	the states of matter	the states of matter	between the states of
density, using the	postulates of the particle	using most postulates	using some postulates	matter using few
particle theory of	theory	of the particle theory	of the particle theory	postulates of the
matter (8s54)				particle theory

Overall Expectation 3. Demonstrate an understanding of the properties and uses of fluids (8s41)

density = $\frac{\text{mass}}{\text{volume}}$

Evaluation Checkpoint #2

Challenge: Take a real recipe (with several liquids) and modify it to include the following concepts and terms:

- identify all of the ingredients and describe the relationship between their mass, volume, and density
- explain the difference between solids, liquids, and gases in terms of density, using the particle theory of matter
- _ describe the viscosity all of the ingredients and compare the viscosity of various ingredients
- explain factors that affect the flow rates of various ingredients
- explain and compare the density of a variety of liquid ingredients
- explain in qualitative terms the relationship between pressure, volume, and temperature when a liquid ingredient is compressed or heated
- explain how Pascal's law relates to your recipe (forces are transferred in all directions in fluids)

	Level 4	Level 3	Level 2	Level 1
3.2 describe the relationship between mass, volume, and density as a property of matter (8s53) and 3.3 explain the difference between solids, liquids, and gases in terms of density, using the particle theory of matter (e.g., in general, solids are more dense than liquids, which are more dense than gases) (8s54)	All ingredients are described in terms of their relationship between mass, volume, and density and there is an explanation of the difference between solids, liquids, and gases in terms of density using the particle theory of matter	Most ingredients are described in terms of their relationship between mass, volume, and density and there is an explanation of the difference between solids, liquids, and gases in terms of density using the particle theory of matter	Some ingredients are described in terms of their relationship between mass, volume, and density and there is an explanation of solids, liquids, or gases in terms of density using the particle theory of matter	Few ingredients are described in terms of their relationship between mass, volume, and density and there is an explanation of solids, liquids, or gases in terms of density
3.1 demonstrate an understanding of viscosity and compare the viscosity of various liquids (e.g., water, syrup, oil, shampoo, ketchup) (8s52) and explain factors that affect the flow rates of various ingredients	The viscosity of all ingredients is incorporated and the viscosity of various liquids compared. More than one factor that affects the flow rates of various ingredients is included	The viscosity of most ingredients is incorporated and the viscosity of various liquids compared. At least one factor that affect the flow rates of various ingredients is included	The viscosity of some ingredients is incorporated and the viscosity of two liquids is compared. No factors that affect the flow rates of various ingredients are included	The viscosity of few/no ingredients is incorporated. There is no comparison or factors that affect the flow rates
2.3 investigate and compare the density of a variety of liquids (e.g., water, salt water, corn syrup, liquid soap).	There is a comparison of various liquids in terms of density	There is a comparison of two liquids in terms of density	There is an explanation of density for two liquids	There is an explanation of density for one liquid
3.6 explain in qualitative terms the relationship between pressure , volume , and temperature when a liquid (e.g., water) or a gas (e.g., air) is compressed or heated (8s57)	There is an detailed explanation in qualitative terms of the relationship between pressure, volume, and temperature when a liquid or a gas is compressed or heated	There is an explanation in qualitative terms of the relationship between pressure, volume, and temperature when a liquid or a gas is compressed or heated	There is an explanation of the relationship between pressure, volume, and temperature when a liquid or a gas is compressed or heated	There is no explanation of the relationship between pressure, volume, and temperature when a liquid or a gas is compressed or heated
3.7 explain how forces are transferred in all directions in fluids (Pascal's law) (8s58)	A detailed explanation of how Pascal's law relates to the recipe is included	An explanation of how Pascal's law relates to the recipe is included	It is identified how Pascal's law relates to the recipe	It is not identified how Pascal's law relates to the recipe